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Abstract

Background: Perfluoroalkyl and polyfluoroalkyl substances (PFAS) exposure have been 

associated with obesity and related comorbidities, possibly through disrupting signaling pathways 

of adipokines. Both leptin and adiponectin can modulate metabolic processes. However, the effects 

of PFAS on adipokines are not well understood.

Objective: We determined if serum PFAS concentrations were associated with adipokine profiles 

in midlife women.

Methods: We examined 1,245 women aged 45–56 years from the Study of Women’s Health 

Across the Nation. Concentrations of 11 PFAS were quantified in baseline serum samples 

collected in 1999–2000. Linear and branched perfluorooctane sulfonic acid isomers (n-PFOS and 

Sm-PFOS) and their sum (PFOS), linear perfluorooctanoic acid (n-PFOA), perfluorononanoic acid 

(PFNA), perfluorohexane sulfonic acid (PFHxS), 2-(N-methyl-perfluorooctane sulfonamido) 

acetic acid (MeFOSAA), and 2-(N-ethyl-perfluorooctane sulfonamido) acetic acid (EtFOSAA) 

with detection frequencies >60% were included in the analysis. Adipokines including leptin, 

soluble leptin receptor (sOB-R), free leptin index (FLI, the ratio of leptin to sOB-R), total and high 

molecular weight (HMW) adiponectin were assessed in 2002–2003. We utilized multivariable 

linear regressions and Bayesian kernel machine regression (BKMR) to assess individual and 
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overall joint effects of PFAS on adipokines with adjustment for age, race/ethnicity, study site, 

education, smoking status, physical activity, menopausal status, and waist circumference.

Results: A doubling of PFAS concentrations was associated with 7.8% (95% CI: 2.5%, 13.4%) 

higher FLI for PFOS, 9.4% (95% CI: 3.7%, 15.3%) for n-PFOA, 5.5% (95% CI: 2.2%, 9.0%) for 

EtFOSAA and 7.4% (95% CI: 2.8%, 12.2%) for MeFOSAA. Similar associations were found for 

leptin. Only EtFOSAA was associated with lower sOB-R concentrations (1.4% lower, 95% CI: 

−2.7%, −0.1%). Results remained in women with overweight or obesity but not those with normal 

weight or underweight. No statistically significant associations were observed with total or HMW 

adiponectin, except for PFNA with total and HMW adiponectin observed in women with normal 

weight or underweight. In BKMR analysis, women with PFAS concentrations at the median and 

the 90th percentile had 30.9% (95% CI: 15.6%, 48.3%) and 52.1% (95% CI: 27.9%, 81.0%) higher 

FLI, respectively, compared with those with concentrations fixed at the 10th percentile.

Conclusion: Some PFAS may alter circulating levels of leptin. Understanding associations 

between PFAS and adipokines may help elucidate whether PFAS can influence obesity and 

metabolic disease.
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1. INTRODUCTION

The global epidemic of overweight and obesity presents a major challenge to chronic disease 

prevention across the life course (Afshin et al., 2017). While the role of many modifiable 

risk factors for obesity including high caloric diet and sedentary lifestyle have been widely 

studied, the role of environmental factors is beginning to receive attention. One factor of 

interest is perfluoroalkyl and polyfluoroalkyl substances (PFAS), a family of synthetic 

chemicals with ubiquitous human exposure (ATSDR, 2018). PFAS have been used in many 

consumer products including upholstery, non-stick cookware, food packaging, personal care 

products, and fire-fighting foams (ATSDR, 2018). A recent nationwide survey reported that 

more than 200 million United States residents could have PFAS-contaminated drinking 

water (Andrews and Naidenko, 2020). In addition, PFAS are extremely stable in the 

environment and some have long elimination half-lives in humans (Ding et al., 2020a; Olsen 

et al., 2007).

Previous epidemiologic studies suggest that PFAS may impact metabolic function (Cardenas 

et al., 2018; Ding et al., 2021; Liu et al., 2018), alter glucose homeostasis (Cardenas et al., 

2019, 2017; Sun et al., 2018), and affect lipid metabolism (Eriksen et al., 2013; Lin et al., 

2019; Starling et al., 2014). PFAS were also found to promote murine adipogenesis and 

trigger adipocyte differentiation of human adipose tissues and their derived stem cells in 
vitro (Liu et al., 2019; Watkins et al., 2015; Xu et al., 2016). Growing evidence supports 

obesity as a disorder of energy homeostasis rather than simple accumulation of excess 

adiposity (Schwartz et al., 2017). To evaluate whether PFAS may increase the risk of 
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obesity-related disorders and understand the etiology, examining the effects of PFAS on key 

regulatory factors of human adipose tissue is critically important.

Adipose tissue serves as an active endocrine organ and secretes multiple hormone-like 

adipokines such as leptin and adiponectin to modulate metabolic processes (Ouchi et al., 

2011). Leptin, a key pro-inflammatory adipokine, is expressed proportionately to body fat 

mass and is positively associated with control of appetite and energy homeostasis (Watkins 

et al., 2015). Despite this, most individuals with obesity have elevated leptin concentrations 

in circulating and active forms, indicating a state of leptin resistance (Lee et al., 2009). 

Soluble leptin receptor (sOB-R) can downregulate the action of leptin through the formation 

of leptin-sOB-R complexes (Lammert et al., 2001). The free leptin index (FLI), the ratio of 

total leptin to sOB-R concentrations, has been proposed as a biomarker of leptin resistance 

to give information on leptin bioavailability (Kratzsch et al., 2002). As opposed to leptin, 

serum adiponectin correlates inversely with fat mass and insulin resistance and exerts anti-

inflammatory effects (Watkins et al., 2015). The high molecular weight (HMW) isoform of 

adiponectin is the most biologically active, compared to its low and middle molecular 

weight counterparts (Ouchi et al., 2011).

The impact of PFAS on adipokines is not well understood. Among the limited number of 

epidemiologic studies of the association between PFAS and adipokines (Bassler et al., 2019; 

Cardenas et al., 2017; Lin et al., 2011; Liu et al., 2018) findings are inconsistent. Their small 

sample size may also limit the power to observe associations. Additionally, people are 

exposed to multiple PFAS on a daily basis, but all previous studies focused on individual 

compounds. Studies of chemicals assessed individually are subject to non-linear dose-

response relationships and confounding by co-exposure (Ding et al., 2020b; Wang et al., 

2020c, 2019b, 2018). Furthermore, it is largely unknown whether the menopausal transition, 

which is accompanied by unfavorable changes in body composition and abdominal fat 

deposition (Greendale et al., 2019), may be involved in the potential effects of PFAS on 

metabolic disorders.

Therefore, we examined associations between PFAS concentrations and leptin, sOB-R, 

adiponectin, and HMW adiponectin in the Study of Women’s Health Across the Nation 

(SWAN), a large, prospective cohort of women transitioning through menopause. We also 

considered multiple PFAS and assessed their joint effects on adipokine profiles. Given that 

leptin and adiponectin may account for the associations between adipose tissue and 

inflammation in individuals with overweight and obesity (Conroy et al., 2011), we 

conducted a secondary analysis with stratification by overweight and obesity status and 

hypothesized that women with overweight and obesity may be more vulnerable to the effects 

of PFAS on adipokines. To identify the time window of susceptibility during the menopausal 

transition, we also examined the associations between PFAS and adipokines stratified by 

menopausal status.
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2. METHODS

2.1 Study population

The present study included a sub-cohort of participants from SWAN, a multi-site, multi-

racial/ethnic, community-based prospective study designed to characterize physiological and 

psychosocial changes that occur during menopausal transition (Santoro et al., 2011). In 1996 

to 1997, a total of 3,302 premenopausal women aged 42–52 years were recruited from seven 

study sites, including Boston, MA; Chicago, IL; Southeast MI; Los Angeles, CA; Newark, 

NJ; Oakland, CA; and Pittsburgh, PA. Each site enrolled a sample of non-Hispanic White 

women plus women from one designated minority group, including Black (Boston, Chicago, 

Southeast MI, Pittsburgh), Chinese (Oakland), Japanese (Los Angeles), and Hispanic 

(Newark). At enrollment, eligible participants had to have an intact uterus, at least one 

menstrual period in the prior three months, and not have taken hormone medications within 

the prior three months. The Institutional Review Board at each study site approved this 

study, and informed consent was obtained at each study visit.

The SWAN Multi-Pollutant Study (MPS) was initiated in 2016, using the SWAN follow-up 

visit 03 (V03, 1999–2000) as the MPS baseline to examine the potential health effects of 

multiple environmental chemicals. The study designs of the SWAN MPS were previously 

described (Ding et al., 2020a; Park et al., 2019; Wang et al., 2019a, 2020b, 2020a). In brief, 

SWAN cohort at visit 03 had 2,694 women eligible to be included in the SWAN MPS 

cohort. Women from Chicago (n=368) and Newark (n=278) were excluded due to a lack of 

urine samples. After further excluding 648 women with no or insufficient urine or serum 

samples for chemical assessment, 1,400 women were included in the SWAN MPS. PFAS 

concentrations were quantified in 1,400 participants at the SWAN MPS baseline (1999–

2000), using serum samples from the SWAN Repository. After excluding 92 women with 

missing information on adipokines and 63 missing key covariates of interest, data from 

1,245 were available for the current analyses. The study design is displayed in the 

Supplemental Materials Figure S1.

2.2 PFAS assessment

Serum samples were sent to the Division of Laboratory Sciences, National Center for 

Environmental Health, Centers for Disease Control and Prevention (CDC) for analysis. The 

CDC laboratory’s involvement did not constitute engagement in human-subjects research. 

We measured perfluorohexane sulfonic acid (PFHxS), linear perfluorooctane sulfonic acid 

(n-PFOS), sum of branched isomers of PFOS (Sm-PFOS), linear perfluorooctanoic acid (n-

PFOA), sum of branched isomers of PFOA (Sb-PFOA), perfluorononanoic acid (PFNA), 

perfluorodecanoic acid (PFDA), perfluoroundecanoic acid (PFUnDA), perfluorododecanoic 

acid (PFDoDA), 2-(N-methyl-perfluorooctane sulfonamido) acetic acid (MeFOSAA), and 2-

(N-ethyl-perfluorooctane sulfonamido) acetic acid (EtFOSAA) in 0.1 mL of serum by online 

solid phase extraction-high performance liquid chromatography-isotope dilution-tandem 

mass spectrometry (Kato et al., 2011). Total PFOS (PFOS) was computed as the sum of n-

PFOS and Sm-PFOS. Most of the total PFOA (PFOA) is n-PFOA because of low detection 

of Sb-PFOA (<20%), and thus we did not calculate total PFOA and used instead n-PFOA in 

the analysis. The limit of detection (LOD) was 0.1 ng/mL for all PFAS examined. 
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Measurements below the LODs were replaced by LOD/ 2 (Hornung and Reed, 1990). The 

coefficients of variation of low- and high-concentration quality control (QC) pools were 5.9–

12.1% (low QC) and 5.9–10.6% (high QC), depending on the analyte. PFAS were 

significantly and positively correlated with each other, as shown in the Supplemental 

Materials Figure S2.

2.3 Adipokine assessment

Assays were run on stored serum samples collected from the SWAN follow-up visit 6, 

corresponding to the MPS follow-up (2002–2003). At collection, a 12-hour fasting blood 

draw was performed within days 2–5 of the menstrual cycle if a woman was still 

menstruating. For women not regularly menstruating or if a blood sample was not obtainable 

in the day 2–5 window, a random fasting blood draw was obtained. For women who were 

postmenopausal, a blood sample was drawn at their clinic visit, scheduled to be on the 

anniversary of their previous visit. Leptin, sOB-R, adiponectin and HMW adiponectin were 

determined at the University of Michigan in duplicate, using commercially available 

colorimetric enzyme immunoassay kits according to the manufacturer’s instructions 

(adiponectin, HMW adiponectin, resistin, and leptin, Millipore, St. Charles, MO and soluble 

leptin receptor and MCP-1, R& D systems, Minneapolis, MN). The mean coefficient of 

variation percent for duplicate samples for each subject and lower limit of detection, 

respectively, were: adiponectin: 4%, 0.78 ng/mL; HMW adiponectin: 8.1%, 0.5 ng/ml; 

resistin: 5%, 0.16 ng/mL; leptin: 4%, 0.5 ng/mL; MCP-1: 1.7%, 31.2 pg/mL, and soluble 

leptin receptor: 3.7%, 0.31 ng/ml.

2.4 Covariates

A comprehensive set of confounders were selected a priori (Khan et al., 2012; Park et al., 

2019). Information on covariates was obtained from standardized interviews. Covariates 

selected in this analysis are from SWAN follow-up visit 3, to coincide with the SWAN MPS 

baseline. Sociodemographic variables included age (in years), self-identified race/ethnicity, 

study site, and education (high school or less, some college, and college degree or higher). 

Self-reported lifestyle factors consisted of smoking status (never smoked, past smoker, and 

current smoker) (Ferris, 1978) and physical activity (Sternfeld et al., 1999). Menopausal 

status was obtained from self-reported bleeding patterns in the prior year, categorized as 

follows: premenopausal (menses in past 3 months with no change in bleeding pattern), early 

perimenopausal (menses in past 3 months but decreasing predictability between menses), 

late perimenopausal (no menses in past 3–11 months), natural menopause (no menses in past 

12 or more months), surgical menopause (history of hysterectomy or had two ovaries 

removed), and unknown (past-year use of HT before the documentation of a final menstrual 

period). Height and weight were measured without shoes, and in light indoor clothing. Body 

mass index (BMI) was calculated as weight (kg)/height (m2). Waist circumference was 

measured to the nearest 0.1 cm at the level of the natural waist, defined as the narrowest part 

of the torso as seen from the anterior aspect.
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2.5 Statistical analysis

Descriptive statistics were calculated for baseline PFAS concentrations, participant 

characteristics and adipokine concentrations. PFAS concentrations were log-transformed 

with base 2, and leptin, sOB-R, total and HMW adiponectin concentrations were log-

transformed to ensure normality. Associations between PFAS and adipokines were estimated 

using linear regression models with PFAS assessed individually. Effect estimates were back 

transformed and interpreted as percent changes (95% confidence intervals, 95% CIs) in 

adipokine concentrations per doubling increase in PFAS concentrations. Percent changes 

should, therefore, be interpreted as relative differences in adipokine concentrations. Models 

were initially adjusted for age, race/ethnicity, study site, education, smoking status, physical 

activity, and menopausal status. Because adipokines are secreted by adipose tissues, 

adiposity could be an intermediate on the causal pathway from PFAS to adipokines. On the 

other hand, obesity status is an independent determinant of PFAS concentrations (Park et al., 

2019), and thus adiposity could also be a confounder. Thus, we compared models with and 

without adjustment of waist circumference as a surrogate measure of adiposity. Sensitivity 

analyses considered BMI instead of waist circumference as the marker of adiposity used as a 

covariate in the regressions. To relax the assumption of linearity of the associations between 

PFAS and adipokines, we categorized PFAS concentrations based on quartiles of their 

distributions and examined the associations between PFAS quartiles and adipokines.

We evaluated the joint effects of n-PFOS, Sm-PFOS, n-PFOA, PFHxS, PFNA, EtFOSAA 

and MeFOSAA on adipokine profiles, using Bayesian kernel machine regression (BKMR), 

while accounting for non-linear dose-response relationships, correlations among chemicals, 

and confounding by correlated co-pollutants (Bobb et al., 2015). BKMR is a semi-

parametric machine learning method that can be used to evaluate the effects of individual 

PFAS, the overall effects, and interactions between different PFAS. The general modeling 

framework can be represented by the equation, Y i = ℎ Zi + Xi
Tβ + εi, where Yi is the 

outcome, h is a kernel function of the predictor variables Zi, and Xi is a vector of covariates 

with the corresponding vector of coefficients β. Kernel machine regression provides 

flexibility to model non-linear relations between a number of variables and a particular 

response variable, and to estimate the overall cumulative effects of PFAS mixtures. A 

Gaussian kernel was chosen to support flexible exposure-response shapes. Posterior 

inclusion probabilities (PIPs) were derived to estimate the importance of variables for the 

associations between PFAS mixtures and adipokines (Bobb et al., 2015). We also ran our 

BKMR analysis controlling for waist circumference and BMI in separate analyses.

Small adipocytes in individuals with normal weight promote metabolic homeostasis; the 

enlarged adipocytes of individuals with obesity recruit macrophages and promote 

inflammation. Therefore, as a secondary analysis, we assessed effect modification by 

overweight and obesity status, to evaluate potential heterogeneity in the magnitude of the 

associations. To examine this, we stratified our linear regression models by overweight/

obesity status. Overweight/obesity was defined as BMI2≥25 kg/m2 for White and Black 

women, and BMI≥23 kg/m2 for Chinese and Japanese women. Furthermore, it is unclear 

whether menopausal status may play a role in the potential effects of PFAS on adipokines. 

Thus, we evaluated the associations between PFAS and adipokines stratified by menopausal 
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status. Due to small sample sizes and uncertainties in surgical menopause and hormone 

therapy, menopausal status was classified into pre-/early perimenopause and late peri-/

postmenopause. All analyses were conducted using SAS version 9.4 (SAS Institute Inc), 

except for BKMR, which we implemented with R package ‘bkmr’ using R version 3.6.0 (R 

Foundation For Statistical Computing).

3. RESULTS

3.1 Participant characteristics

Table 1 shows participant characteristics and adipokine concentrations at SWAN-MPS 

baseline. Women had a median age of 49.5 (interquartile range, IQR: 47.3, 51.5) years. 

Nearly half of the sample (51.1%) was White, and 20.9% were African American, 12.6% 

Chinese, and 15.4% Japanese. Approximately half of women (51%) attended some college 

or more, and most (62.9%) were never smokers. Most women were pre- (11.4%), early peri- 

(50.7%), or late perimenopausal (8.4%), whereas only 14.8% were postmenopausal and 

nearly 15% could not be determined due to use of hormone therapy. Women had a median 

BMI of 25.9 (IQR: 22.5, 31.4) kg/m2, and a median waist circumference of 81.7 (IQR: 73.4, 

94.1) cm.

The median (IQR) of MPS baseline serum concentrations was 1.5 (1.0–2.4) ng/mL for 

PFHxS, 24.7 (17.6–36.0) ng/mL for PFOS, 4.1 (2.9–5.8) ng/mL for n-PFOA, 0.6 (0.4–0.8) 

ng/mL for PFNA, 1.2 (0.7–2.2) ng/mL for EtFOSAA, and 1.5 (0.9–2.3) ng/mL for 

MeFOSAA (Table S1). Sb-PFOA, PFDA, PFUnDA and PFDoDA with detection frequencies 

<60% were not included in the analysis.

3.2 Individual associations of PFAS with adipokine profiles: linear models

Associations between serum PFAS concentrations and adipokines are presented in Table 2. 

Both leptin and FLI had a statistically significant positive relationship with baseline PFAS 

concentrations, with the exception of PFNA and PFHxS. Controlling for age, race/ethnicity, 

study site, education, smoking status, physical activity and menopausal status, FLI was 

associated with PFOS (percent change: 14.7%, (95% CI: 7.7%, 22.3%) per doubling in 

concentrations), n-PFOS (12.4%, 95% CI: 5.4%, 19.9%), Sm-PFOS (15.3%, 95% CI: 9.3%, 

21.6%), n-PFOA (16.0%, 95% CI: 8.5%, 24.0%), EtFOSAA (9.8%, 95% CI: 5.4%, 14.3%), 

and MeFOSAA (8.9%, 95% CI: 3.1%, 15.1%). Similar results were also observed for leptin. 

The magnitude of the associations between PFAS and leptin and FLI were attenuated by 

approximately 50% in models further adjusted for waist circumference. Further, after 

adjustment for waist circumference, PFNA was now statistically significantly associated 

with both leptin (5.4%, 95% CI: 1.2%, 9.9%) and FLI (7.3%, 95% CI: 2.1%, 12.8%). 

Baseline concentrations of n-PFOA and EtFOSAA, however, were significantly inversely 

associated with sOB-R concentrations (percent change: −2.5%, 95% CI: −4.7%, −0.3% for 

n-PFOA; −2.1%, 95% CI: −3.4%, −0.7% for EtFOSAA). These associations were also 

attenuated following further adjustment for waist circumference, and the association 

between n-PFOA and sOB-R was no longer statistically significant. There were no 

statistically significant associations with any of PFAS compounds and adiponectin or HMW 

adiponectin. When modeling PFAS quartiles, PFOS, and n-PFOA were positively associated 
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with leptin and FLI (Table 3). Additionally, we observed potential non-linear relationships of 

PFHxS, EtFOSAA and MeFOSAA with leptin and FLI. EtFOSAA also showed non-linear 

associations with sOB-R. For instance, EtFOSAA (Q3 vs. Q1) was associated with higher 

leptin (16.72%, 95% CI: 5.58%, 29.04%), lower sOB-R (−6.61%, 95% CI: −11.04%, 

−1.96%), and higher FLI (24.99%, 95% CI: 10.78%, 41.02%); while other PFAS quartiles 

(Q2 or Q4 vs. Q1) were associated with smaller changes. Adjustment for BMI instead of 

waist circumference did not change the results (Tables S2–S3).

3.3 Associations of PFAS mixtures with adipokines: Bayesian kernel machine regression

Figure 1 shows the dose-response relationships between PFAS and FLI estimated using 

BKMR with PFAS as a mixture, after adjusting for all covariates except for waist 

circumference and holding all other PFAS at their median concentrations. Based on the 

estimated posterior inclusion probabilities, BKMR detected all 7 PFAS including n-PFOS 

(PIP=0.79), Sm-PFOS (PIP=1.00), n-PFOA (PIP=0.85), PFHxS (PIP=0.98), PFNA 

(PIP=0.68), EtFOSAA (PIP=0.89), and MeFOSAA (PIP=0.87) as important contributors to 

the overall association. We observed non-linear associations of log-transformed FLI with 

log-transformed concentrations of Sm-PFOS, EtFOSAA and MeFOSAA, as well as fairly 

linear associations with n-PFOS, n-PFOA, PFHxS and PFNA. However, only 3 PFAS 

remained with additional adjustment for waist circumference, namely Sm-PFOS (PIP=0.50), 

n-PFOA (PIP=0.44), and EtFOSAA (PIP=0.98) as important predictors, but not n-PFOS 

(PIP=0.11), PFHxS (PIP=0.03), PFNA (PIP=0.13), or MeFOSAA (PIP=0.03) (Figure 2).

Figure 3 represents the overall joint effects of PFAS mixtures as the estimated percent 

change in FLI comparing concentrations of all PFAS together at different percentiles of their 

distributions (e.g. 20th, 40th, 60th) to all PFAS at their 10th percentiles, after controlling for 

all covariates without (Figure 3A) and with adjustment for waist circumference (Figure 3B). 

Cumulative PFAS mixtures were positively associated with FLI with and without adjustment 

for waist circumference. After controlling for all covariates including waist circumference, 

compared to those with PFAS concentrations fixed at the 10th percentiles, the overall joint 

effect of PFAS for women with PFAS concentrations at the medians was a 30.9% (95% CI: 

15.6%, 48.3%) higher FLI; and those with PFAS concentrations at the 90th percentiles had 

52.1% (95% CI: 27.9%, 81.0%) higher FLI. We did not observe any evidence for 

interactions among PFAS (data not shown). Leptin showed similar results to FLI (Figures 

S3–S4). We did not detect any associations of PFAS mixtures with total or HMW 

adiponectin (data not shown). In the sensitivity analysis, including BMI instead of waist 

circumference did not change the results (Figures S5–S6).

3.4 Stratification by overweight/obesity and menopausal status

Stratified models revealed that PFOS, n-PFOS, Sm-PFOS, n-PFOA and EtFOSAA was 

significantly associated with higher leptin concentrations and larger FLI in BMI ≥ 25 kg/m2 

but not among women with a BMI < 25 kg/m2 or 23 kg/m2 for Chinese and Japanese (Table 

S4). However, EtFOSAA concentrations were positively associated with both leptin and FLI 

in both groups, and the magnitude was similar. On the other hand, MeFOSAA was only 

statistically significantly associated with leptin and FLI among women with underweight or 

normal weight, and the magnitude of this association was more than double that among 
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women with overweight/obesity and women with obesity. Interestingly, these compounds 

had different directions of associations with total and HMW adiponectin. While PFOS and 

Sm-PFOS were associated with higher total adiponectin in women with overweight/obesity 

and women with obesity, PFNA was related to lower total and HMW adiponectin in women 

with normal weight or underweight. Stratification by menopausal status also detected 

significant associations of PFOS, PFOA, EtFOSAA and MeFOSAA with leptin and FLI in 

pre-/early perimenopause (Table S5). Higher EtFOSAA was associated with lower sOB-R in 

pre-/early perimenopause. Higher n-PFOA was also associated with lower total adiponectin 

and HMW adiponectin in pre-/early perimenopause.

4. DISCUSSION

We found that leptin concentrations and FLI at a 3-year follow-up were significantly higher 

in women with higher baseline concentrations of PFOS, n-PFOA, PFNA, EtFOSAA and 

MeFOSAA. However, PFAS concentrations were not associated with sOB-R, total 

adiponectin, or HMW adiponectin. Thus, the association of PFAS with FLI is likely driven 

by the association of PFAS and leptin, not any differences in sOB-R. Further, the present 

study is the first to report the overall joint effects of PFAS mixtures and nonlinear 

associations between PFAS and adipokines. A cumulative mixture of PFAS, driven mainly 

by Sm-PFOS, n-PFOA and EtFOSAA, was associated with higher leptin and FLI. These 

findings suggest that potential metabolic effects of PFAS may be through promoting the 

leptin pathways. PFAS concentrations in SWAN are quite comparable to those in the U.S. 

1999–2000 National Health and Nutrition Examination Survey (CDC 2019). So, any effects 

observed are at background exposure levels. Taken together, these findings extend existing 

understanding of the potential effects of PFAS in weight gain (Cardenas et al., 2018; Ding et 

al., 2021; Liu et al., 2018), insulin resistance (Cardenas et al., 2019, 2017; Sun et al., 2018), 

and other metabolic disorders (Eriksen et al., 2013; Lin et al., 2019; Starling et al., 2014).

Adipose tissue has a central role in the production of leptin (Ouchi et al., 2011). PFAS 

exposure may affect adipocyte proliferation and differentiation in toxicologic studies. Some 

PFAS are structural analogous of fatty acids and both can activate peroxisome proliferator-

activated receptors (PPARs) and further induce endocrine disruption (Kraugerud et al., 2011; 

Pedersen et al., 2016), as well as disturbance of lipid and glucose metabolism, inflammation 

and adipocyte differentiation (Berger et al., 2005; Staels and Fruchart, 2005). Experimental 

studies showed that treatment of human visceral preadipocytes in vitro with PFOS at 5 and 

50 μM induced adipogenesis and increased cellular lipid accumulation (Xu et al., 2016). 

PFOS and PFOA exposure also promoted adipogenesis in human mesenchymal stem cells 

(Liu et al., 2019) and mouse 3T3-L1 preadipocytes in vitro (Watkins et al., 2015). 

Epidemiologic studies have reported associations of PFAS exposure with larger body size, 

more body fat, and increased risks of obesity (Cardenas et al., 2017; Ding et al., 2021; Liu et 

al., 2018). In SWAN, we previously observed that exposure to PFOS, PFOA, EtFOSAA and 

MeFOSAA was associated with increased BMI, waist circumference, fat mass and 

proportion fat mass, as well as higher rates of increases during menopausal transition in 

midlife women (Ding et al., 2021). These current findings extend our work by demonstrating 

that PFOS, PFOA, EtFOSAA and MeFOSAA are associated with both leptin and FLI. These 

findings are novel and contribute to advancing our understanding of the biological 
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mechanisms by which PFAS act on leptin to influence adipose tissue, and how adipose 

tissue metabolism is affected by these chemicals. Thus, while the association between PFAS 

and adiposity is widely reported (Cardenas et al., 2018; Ding et al., 2021; Liu et al., 2018), 

few studies have examined the underlying mechanisms for these associations. The limited 

available evidence suggests that PFAS-induced alterations in leptin may be one mechanism 

linking PFAS, adiposity, and metabolic disorders. In a murine model, low doses of PFOA 

(0.01 mg/kg) during young adulthood was associated with midlife body weight gain and 

high leptin concentrations (Hines et al., 2009). Our findings of a strong and consistent 

association between baseline PFAS concentrations and leptin and FLI three years later is 

consistent with this hypothesis.

There have been few previous reports examining adipokines in relation to PFAS and the 

results are mixed. Lin et al., 2011 found that plasma PFNA concentrations were positively 

associated with adiponectin concentrations (8.82, 8.86, 9.14, and 9.41 ng/mL across 

quartiles of PFNA concentrations, P for trend=0.03) among 81 adults aged 20–30 years; no 

relationships were observed for PFOA, PFOS or PFUnDA. Bassler et al., 2019 examined 

leptin in 200 adults from the C8 Health Project and found higher leptin and higher 

adiponectin concentrations associated with serum concentrations of PFHxS and PFNA but 

not with PFOS, PFOA, and PFDA. Liu et al., 2018 examined 562 overweight and obese 

participants aged 30–70 years from the POUNDS Lost trial, and found associations of 

higher leptin concentrations with PFOA at baseline (Partial Spearman correlation=0.09, 

P<0.05) and between changes in leptin concentrations and PFNA during weight regain 

period right after a clinical intervention on weight loss (Partial Spearman correlation=0.10, 

P<0.05); while no association was detected for other compounds or sOB-R. Cardenas et al., 

2018 found PFOA and EtFOSAA (but not PFOS, PFNA, PFHxS or MeFOSAA) related to 

lower adiponectin concentrations in a Diabetes Prevention Program of people at high risk of 

developing type 2 diabetes. The results from Liu et al., 2018 and Cardenas et al., 2018 may 

be subject to selection bias by restricting the study sample to those with overweight and 

obesity, or at high risks of developing diabetes, which may underestimate the true effects of 

PFAS on adipokine profiles.

When restricting our study population to women with overweight/obesity and women with 

obesity, the slight increase of total and HMW adiponectin was associated with higher PFOS 

concentrations. It has been suggested that adiponectin resistance with elevated serum 

adiponectin concentrations is a compensatory response to a lack of adipocyte-specific 

insulin sensitivity or adiponectin responsiveness in persons with obesity (Blüher et al., 2002; 

Engin, 2017; Kim et al., 2006). In contrast, PFNA was associated with lower total and 

HMW adiponectin in women with normal weight or underweight. It is unknown if 

adiponectin responses to PFAS depend on the adiposity status. Future studies should explore 

the exact physiological role of PFAS in adiponectin pathways.

Our findings also supported pre- and early perimenopause as time window of susceptibility 

to PFAS toxicity. It is possible that women who were pre- and early perimenopausal were 

more susceptible to PFAS toxicity and further developed metabolic diseases in their later 

life. Declines in estradiol during the menopausal transition affect energy homeostasis and 

metabolic processes. Toxicology research in vitro and in vivo and epidemiologic studies 
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have suggested that PFAS may alter biosynthesis of sex hormones (Ding et al., 2020c). 

Higher leptin and lower adiponectin concentrations were significantly associated with higher 

estradiol, regardless of obesity status (Karim et al., 2015). This study underscores a critical 

need to uncover the mechanistic actions of PFAS on chronic inflammation and metabolic 

disturbances in women.

Strengths of our study include a large, community-based cohort of midlife women from four 

racial/ethnic groups, which provided comparisons in a single study with consistent questions 

and methodology across race/ethnicity. Further, a sophisticated method (i.e., BKMR) was 

implemented to examine the non-linear dose-response relationships and account for 

correlation structures and confounding by co-exposures. It also enabled us to evaluate the 

cumulative effects of multiple PFAS compounds. Finally, the extensive covariate information 

was available, allowing for adjustment for numerous indicators of adiposity. Because we 

were able to examine adjustment by both BMI and waist circumference, we could examine 

differences in adipokine concentrations while considering their adiposity.

However, some important limitations must be noted. Although the design of our study 

allowed us to evaluate the relationship between PFAS concentrations and subsequent 

adipokine data, we did not have adipokine data at the time of PFAS measurement. Thus, we 

do not know the timing of the relationship between PFAS and adipokine concentrations. 

Further, women in our study sample were in the mid-life and data collection occurred during 

the menopausal transition. Previous studies have reported lower adiponectin and higher 

leptin concentrations as women transitioned from their pre- to postmenopause stage; and the 

observed changes in adiponectin and leptin were significantly correlated with increases in 

intraabdominal fat during the menopausal transition (r = −0.37 for adiponectin and 0.41 for 

leptin) (Lee et al., 2009; Sowers et al., 2008). Thus, we do not know if the differences in 

adipokines observed are unique to this life stage or extend across the life course.

In this cohort of midlife women, we found a statistically significant and positive association 

of baseline serum concentrations of PFOS, n-PFOA, PFNA, EtFOSAA and MeFOSAA with 

FLI and leptin concentrations. These findings suggest that exposure to certain PFAS may 

affect circulating leptin levels in midlife women, with potential implications for subsequent 

metabolic health outcomes during menopausal transition.
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Figure 1. 
Dose-response relationships and 95% confidence interval (95% CI) bands for A. n-PFOS, B. 

Sm-PFOS, C. n-PFOA, D. PFHxS, E. PFNA, F. EtFOSAA, and G. MeFOSAA with free 

leptin index holding all other PFAS at median serum concentrations, estimated by Bayesian 

kernel machine regression. The model was adjusted for age, race/ethnicity, study site, 

education, Smoking status, physical activity and menopausal status.
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Figure 2. 
Dose-response relationships and 95% confidence interval (95% CI) bands for A. Sm-PFOS, 

B. n-PFOA, and C. EtFOSAA with free leptin index, holding all other PFAS at median 

serum concentrations, estimated by Bayesian kernel machine regression. The model was 

adjusted for age, race/ethnicity, study site, education, Smoking status, physical activity, 

menopausal status, and waist circumference.
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Figure 3. 
Cumulative effects of perfluoroalkyl and polyfluoroalkyl substances (PFAS) mixtures on 

free leptin index, estimated by Bayesian kernel machine regression (A. Without adjustment 

for waist circumference; B. With adjustment for waist circumference). This plot shows the 

estimated exposure-response relations and 95% confidence intervals (95% CIs) when all 

PFAS concentrations are held at a certain percentile, compared to when PFAS 

concentrations are held at the 10th percentile. The models were adjusted for age, race, study 

site, education, smoking status, physical activity and menopausal status.
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Table 1

Characteristics of study participants from the Study of Women’s Health Across the Nation Multi-Pollutant 

Study (SWAN MPS) baseline (1999–2000) and adipokine concentrations at SWAN MPS follow-up (2002–

2003).

Characteristics
Total (N=1245)

Median (IQR) or N (%)

Age, years 49.5 (47.3, 51.5)

Race/ethnicity

 White 636 (51.1%)

 Black 260 (20.9%)

 Chinese 157 (12.6%)

 Japanese 192 (15.4%)

Education

 ≤High school 219 (17.6%)

 High school 391 (31.4%)

 College 317 (25.5%)

 Post college 318 (25.5%)

Smoking status

 Never smoked 783 (62.9%)

 Past smoker 340 (27.3%)

 Current smoker 122 (9.8%)

Menopausal status

 Surgical postmenopause 39 (3.1%)

 Natural postmenopause 145 (11.7%)

 Late perimenopause 105 (8.4%)

 Early perimenopause 631 (50.7%)

 Premenopause 142 (11.4%)

 Unknown due to hormone therapy 183 (14.7%)

Physical activity score 7.9 (6.6, 9.0)

Body mass index, kg/m2 25.9 (22.5, 31.4)

Waist circumference, cm 81.7 (73.4, 94.1)

Adipokines

 Leptin, ng/mL 16.3 (9.0, 29.1)

 sOB-R, ng/mL 29.9 (24.0, 37.4)

 Free leptin index 0.54 (0.27, 1.07)

 Adiponectin, μg/mL 11.2 (7.7, 15.7)

 HMW adiponectin, μg/mL 6.8 (4.5, 10.5)
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